Modelling the fluid mechanics of cilia and flagella in reproduction and development.
نویسندگان
چکیده
Cilia and flagella are actively bending slender organelles, performing functions such as motility, feeding and embryonic symmetry breaking. We review the mechanics of viscous-dominated microscale flow, including time-reversal symmetry, drag anisotropy of slender bodies, and wall effects. We focus on the fundamental force singularity, higher-order multipoles, and the method of images, providing physical insight and forming a basis for computational approaches. Two biological problems are then considered in more detail: 1) left-right symmetry breaking flow in the node, a microscopic structure in developing vertebrate embryos, and 2) motility of microswimmers through non-Newtonian fluids. Our model of the embryonic node reveals how particle transport associated with morphogenesis is modulated by the gradual emergence of cilium posterior tilt. Our model of swimming makes use of force distributions within a body-conforming finite-element framework, allowing the solution of nonlinear inertialess Carreau flow. We find that a three-sphere model swimmer and a model sperm are similarly affected by shear-thinning; in both cases swimming due to a prescribed beat is enhanced by shear-thinning, with optimal Deborah number around 0.8. The sperm exhibits an almost perfect linear relationship between velocity and the logarithm of the ratio of zero to infinite shear viscosity, with shear-thickening hindering cell progress.
منابع مشابه
A finite elements study on the role of primary cilia in sensing mechanical stimuli to cells by calculating their response to the fluid flow
The primary cilium which is an organelle in nearly every cell in the vertebrate body extends out of the cell surface like an antenna and is known as cell sensor of mechanical and chemical stimuli. In previous numerical simulations, researchers modeled this organelle as a cantilevered beam attached to the cell surface. In the present study, however, we present a novel model that accommodates for...
متن کاملBiofluidmechanics of Reproduction
Mammalian fertilization requires the coordinated activity of motile spermatozoa, muscular contractions of the uterus and oviduct, as well as ciliary beating. These elastic structures generate forces that drive fluid motion, but their configurations are, in turn, determined by the fluid dynamics. We review the basic fluid mechanical aspects of reproduction, including flagellar/ciliary beating an...
متن کاملA NEW APPROACH TO SOLVE DIFFERENTIAL EQUATIONS ARISING IN FLUID MECHANICS
The purpose of this study is to demonstrate the potential of Imperialist CompetitiveAlgorithm (ICA) for solving Blasius dierential equation. This algorithm is inspiredby competition mechanism among Imperialists and colonies and has demonstrated excellentcapabilities such as simplicity, accuracy, faster convergence and better global optimumachievement in contrast to other evolutionary algorithms...
متن کاملAPPLICATION OF PARTIAL DIFFERENTIAL EQUATIONS IN SNOW MECHANICS
In the present work, failure of a snow slab is analyzed by accounting Normal mode criteria. The analysis has been extended to include residual stress into the model (in addition to body forces). Intensity of crack energy release rate, and displacement components have been derived and their values have been estimated. The obtained results have been compared with the existing snow slab failure mo...
متن کاملCiliary function and motor protein composition of human fallopian tubes.
STUDY QUESTION What is the motor protein composition and function of human fallopian tube (FT) cilia? SUMMARY ANSWER Although the motor protein composition and function of human FT cilia resemble that of respiratory cilia, females with primary ciliary dyskinesia (PCD) are not necessarily infertile. WHAT IS KNOWN ALREADY FTs are lined with multiple motile cilia, which show a 9 + 2 ultrastruc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European physical journal. E, Soft matter
دوره 35 10 شماره
صفحات -
تاریخ انتشار 2012